Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
2.
Front Microbiol ; 13: 1043049, 2022.
Article in English | MEDLINE | ID: covidwho-2323295

ABSTRACT

Introduction: COVID-19 has a wide disease spectrum ranging from asymptomatic to severe. While humoral immune responses are critical in preventing infection, the immune mechanisms leading to severe disease, and the identification of biomarkers of disease progression and/or resolution of the infection remains to be determined. Methods: Plasma samples were obtained from infections during the initial wave of ancestral wildtype SARS-CoV-2 and from vaccine breakthrough infections during the wave of Delta variant, up to six months post infection. The spike-specific antibody profiles were compared across different severity groups and timepoints. Results: We found an association between spike-specific IgM, IgA and IgG and disease severity in unvaccinated infected individuals. In addition to strong IgG1 and IgG3 response, patients with severe disease develop a robust IgG2 and IgG4 response. A comparison of the ratio of IgG1 and IgG3 to IgG2 and IgG4 showed that disease progression is associated with a smaller ratio in both the initial wave of WT and the vaccine breakthrough Delta infections. Time-course analysis revealed that smaller (IgG1 and IgG3)/(IgG2 and IgG4) ratio is associated with disease progression, while the reverse associates with clinical recovery. Discussion: While each IgG subclass is associated with disease severity, the balance within the four IgG subclasses may affect disease outcome. Acute disease progression or infection resolution is associated with a specific immunological phenotype that is conserved in both the initial wave of WT and the vaccine breakthrough Delta infections.

3.
Front Immunol ; 13: 1031852, 2022.
Article in English | MEDLINE | ID: covidwho-2323296

ABSTRACT

The emergence of new SARS-CoV-2 variants, such as the more transmissible Delta and Omicron variants, has raised concerns on efficacy of the COVID-19 vaccines. Here, we examined the waning of antibody responses against different variants following primary and booster vaccination. We found that antibody responses against variants were low following primary vaccination. The antibody response against Omicron was almost non-existent. Efficient boosting of antibody response against all variants, including Omicron, was observed following a third dose. The antibody response against the variants tested was significantly higher at one month following booster vaccination, compared with two months following primary vaccination, for all individuals, including the low antibody responders identified at two months following primary vaccination. The antibody response, for all variants tested, was significantly higher at four months post booster than at five months post primary vaccination, and the proportion of low responders remained low (6-11%). However, there was significant waning of antibody response in more than 95% of individuals at four months, compared to one month following booster. We also observed a robust memory B cell response following booster, which remained higher at four months post booster than prior to booster. However, the memory B cell responses were on the decline for 50% of individuals at four months following booster. Similarly, while the T cell response is sustained, at cohort level, at four months post booster, a substantial proportion of individuals (18.8 - 53.8%) exhibited T cell response at four months post booster that has waned to levels below their corresponding levels before booster. The findings show an efficient induction of immune response against SARS-CoV-2 variants following booster vaccination. However, the induced immunity by the third BNT162b2 vaccine dose was transient. The findings suggest that elderly individuals may require a fourth dose to provide protection against SARS-CoV-2.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , Humans , BNT162 Vaccine , SARS-CoV-2 , COVID-19/prevention & control , Antibodies
4.
Frontiers in microbiology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2147289

ABSTRACT

Introduction COVID-19 has a wide disease spectrum ranging from asymptomatic to severe. While humoral immune responses are critical in preventing infection, the immune mechanisms leading to severe disease, and the identification of biomarkers of disease progression and/or resolution of the infection remains to be determined. Methods Plasma samples were obtained from infections during the initial wave of ancestral wildtype SARS-CoV-2 and from vaccine breakthrough infections during the wave of Delta variant, up to six months post infection. The spike-specific antibody profiles were compared across different severity groups and timepoints. Results We found an association between spike-specific IgM, IgA and IgG and disease severity in unvaccinated infected individuals. In addition to strong IgG1 and IgG3 response, patients with severe disease develop a robust IgG2 and IgG4 response. A comparison of the ratio of IgG1 and IgG3 to IgG2 and IgG4 showed that disease progression is associated with a smaller ratio in both the initial wave of WT and the vaccine breakthrough Delta infections. Time-course analysis revealed that smaller (IgG1 and IgG3)/(IgG2 and IgG4) ratio is associated with disease progression, while the reverse associates with clinical recovery. Discussion While each IgG subclass is associated with disease severity, the balance within the four IgG subclasses may affect disease outcome. Acute disease progression or infection resolution is associated with a specific immunological phenotype that is conserved in both the initial wave of WT and the vaccine breakthrough Delta infections.

5.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2125048

ABSTRACT

The emergence of new SARS-CoV-2 variants, such as the more transmissible Delta and Omicron variants, has raised concerns on efficacy of the COVID-19 vaccines. Here, we examined the waning of antibody responses against different variants following primary and booster vaccination. We found that antibody responses against variants were low following primary vaccination. The antibody response against Omicron was almost non-existent. Efficient boosting of antibody response against all variants, including Omicron, was observed following a third dose. The antibody response against the variants tested was significantly higher at one month following booster vaccination, compared with two months following primary vaccination, for all individuals, including the low antibody responders identified at two months following primary vaccination. The antibody response, for all variants tested, was significantly higher at four months post booster than at five months post primary vaccination, and the proportion of low responders remained low (6-11%). However, there was significant waning of antibody response in more than 95% of individuals at four months, compared to one month following booster. We also observed a robust memory B cell response following booster, which remained higher at four months post booster than prior to booster. However, the memory B cell responses were on the decline for 50% of individuals at four months following booster. Similarly, while the T cell response is sustained, at cohort level, at four months post booster, a substantial proportion of individuals (18.8 – 53.8%) exhibited T cell response at four months post booster that has waned to levels below their corresponding levels before booster. The findings show an efficient induction of immune response against SARS-CoV-2 variants following booster vaccination. However, the induced immunity by the third BNT162b2 vaccine dose was transient. The findings suggest that elderly individuals may require a fourth dose to provide protection against SARS-CoV-2.

6.
Nat Commun ; 13(1): 4615, 2022 08 08.
Article in English | MEDLINE | ID: covidwho-2036813

ABSTRACT

Understanding the impact of age on vaccinations is essential for the design and delivery of vaccines against SARS-CoV-2. Here, we present findings from a comprehensive analysis of multiple compartments of the memory immune response in 312 individuals vaccinated with the BNT162b2 SARS-CoV-2 mRNA vaccine. Two vaccine doses induce high antibody and T cell responses in most individuals. However, antibody recognition of the Spike protein of the Delta and Omicron variants is less efficient than that of the ancestral Wuhan strain. Age-stratified analyses identify a group of low antibody responders where individuals ≥60 years are overrepresented. Waning of the antibody and cellular responses is observed in 30% of the vaccinees after 6 months. However, age does not influence the waning of these responses. Taken together, while individuals ≥60 years old take longer to acquire vaccine-induced immunity, they develop more sustained acquired immunity at 6 months post-vaccination. A third dose strongly boosts the low antibody responses in the older individuals against the ancestral Wuhan strain, Delta and Omicron variants.


Subject(s)
COVID-19 , Viral Vaccines , Aged , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Middle Aged , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , mRNA Vaccines
7.
Clin Transl Immunology ; 11(8): e1403, 2022.
Article in English | MEDLINE | ID: covidwho-2003593

ABSTRACT

Objective: Despite the high vaccine efficacy of mRNA COVID-19 vaccines, there are individuals who developed excessive reactogenic and/or allergic responses after the first mRNA dose and were considered ineligible for further mRNA doses. CoronaVac, an inactivated SARS-CoV-2 vaccine, is recommended in Singapore as an alternative. Methods: Individuals, ineligible for further mRNA vaccines (BNT162b2 or mRNA-1273) because of excessive reactive responses to prime mRNA vaccination, were recruited and offered two doses of CoronaVac as booster vaccination 38-224 days post their mRNA vaccine dose. Individuals who did not develop any excessive reactive responses after the prime mRNA vaccination were also recruited and given another mRNA vaccine as booster vaccination. Blood samples were collected at days 0, 21 and 90 post first CoronaVac dose and mRNA dose, respectively, for analysis. Results: We showed that two CoronaVac booster doses induced specific immunity in these mRNA vaccine-primed individuals. Although the spike-specific antibody response was lower, their memory B cell response against the receptor-binding domain (RBD) of the spike protein was similar, compared with individuals who received two BNT162b2 injections. The spike-specific memory T cell response also increased following CoronaVac booster doses. However, specific immunity against the Omicron variant was low, similar to individuals with two BNT162b2 doses. Conclusion: Our findings showed that while mRNA vaccine-primed individuals can opt for two subsequent doses of CoronaVac, an additional dose may be necessary to achieve protection, especially against newly emerging immune escape variants such as Omicron.

8.
Int J Infect Dis ; 115: 72-78, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1549834

ABSTRACT

IMPORTANCE: Since January 2020, Singapore has implemented comprehensive measures to suppress SARS-CoV-2. Despite this, the country has experienced contrasting epidemics, with limited transmission in the community and explosive outbreaks in migrant worker dormitories. OBJECTIVE: To estimate SARS-CoV-2 infection incidence among migrant workers and the general population in Singapore. DESIGN: Prospective serological cohort studies. SETTING: Two cohort studies - in a migrant worker dormitory and in the general population in Singapore. PARTICIPANTS: 478 residents of a SARS-CoV-2-affected migrant worker dormitory were followed up between May and July 2020, with blood samples collected on recruitment and after 2 and 6 weeks. In addition, 937 community-dwelling adult Singapore residents, for whom pre-pandemic sera were available, were recruited. These individuals also provided a serum sample on recruitment in November/December 2020. EXPOSURE: Exposure to SARS-CoV-2 in a densely populated migrant worker dormitory and in the general population. MAIN OUTCOMES AND MEASURES: The main outcome measures were the incidences of SARS-CoV-2 infection in migrant workers and in the general population, as determined by the detection of neutralizing antibodies against SARS-CoV-2, and adjusting for assay sensitivity and specificity using a Bayesian modeling framework. RESULTS: No evidence of community SARS-CoV-2 exposure was found in Singapore prior to September 2019. It was estimated that < 2 per 1000 adult residents in the community were infected with SARS-CoV-2 in 2020 (cumulative seroprevalence: 0.16%; 95% CrI: 0.008-0.72%). Comparison with comprehensive national case notification data suggested that around 1 in 4 infections in the general population were associated with symptoms. In contrast, in the migrant worker cohort, almost two-thirds had been infected by July 2020 (cumulative seroprevalence: 63.8%; 95% CrI: 57.9-70.3%); no symptoms were reported in almost all of these infections. CONCLUSIONS AND RELEVANCE: Our findings demonstrate that SARS-CoV-2 suppression is possible with strict and rapid implementation of border restrictions, case isolation, contact tracing, quarantining, and social-distancing measures. However, the risk of large-scale epidemics in densely populated environments requires specific consideration in preparedness planning. Prioritization of these settings in vaccination strategies should minimize the risk of future resurgences and potential spillover of transmission to the wider community.


Subject(s)
COVID-19 , Transients and Migrants , Adult , Bayes Theorem , Humans , Pandemics , Prospective Studies , SARS-CoV-2 , Seroepidemiologic Studies , Singapore/epidemiology
9.
J Exp Med ; 218(5)2021 05 03.
Article in English | MEDLINE | ID: covidwho-1109140

ABSTRACT

The efficacy of virus-specific T cells in clearing pathogens involves a fine balance between antiviral and inflammatory features. SARS-CoV-2-specific T cells in individuals who clear SARS-CoV-2 without symptoms could reveal nonpathological yet protective characteristics. We longitudinally studied SARS-CoV-2-specific T cells in a cohort of asymptomatic (n = 85) and symptomatic (n = 75) COVID-19 patients after seroconversion. We quantified T cells reactive to structural proteins (M, NP, and Spike) using ELISpot and cytokine secretion in whole blood. Frequencies of SARS-CoV-2-specific T cells were similar between asymptomatic and symptomatic individuals, but the former showed an increased IFN-γ and IL-2 production. This was associated with a proportional secretion of IL-10 and proinflammatory cytokines (IL-6, TNF-α, and IL-1ß) only in asymptomatic infection, while a disproportionate secretion of inflammatory cytokines was triggered by SARS-CoV-2-specific T cell activation in symptomatic individuals. Thus, asymptomatic SARS-CoV-2-infected individuals are not characterized by weak antiviral immunity; on the contrary, they mount a highly functional virus-specific cellular immune response.


Subject(s)
Asymptomatic Infections , COVID-19/immunology , Cytokines/immunology , Lymphocyte Activation , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , COVID-19/blood , Cytokines/blood , Humans , Male , Middle Aged , SARS-CoV-2/metabolism , T-Lymphocytes/metabolism
10.
Cell Rep Med ; 2(2): 100193, 2021 02 16.
Article in English | MEDLINE | ID: covidwho-1069040

ABSTRACT

Early detection of infection is crucial to limit the spread of coronavirus disease 2019 (COVID-19). Here we develop a flow cytometry-based assay to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein antibodies in individuals with COVID-19. The assay detects specific immunoglobulin M (IgM), IgA, and IgG in individuals with COVID-19 and also acquisition of all IgG subclasses, with IgG1 being the most dominant. The antibody response is significantly higher at a later stage of infection. Furthermore, asymptomatic individuals with COVID-19 also develop specific IgM, IgA, and IgG, with IgG1 being the most dominant subclass. Although the antibody levels are lower in asymptomatic infection, the assay is highly sensitive and detects 97% of asymptomatic infections. These findings demonstrate that the assay can be used for serological analysis of symptomatic and asymptomatic infections, which may otherwise remain undetected.


Subject(s)
Antibodies, Viral/blood , COVID-19/pathology , Immunoglobulin Class Switching/physiology , Immunoglobulin G/blood , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/immunology , Asymptomatic Diseases , COVID-19/immunology , COVID-19/virology , Flow Cytometry , Humans , Immunoglobulin G/immunology , Immunologic Tests/methods , SARS-CoV-2/isolation & purification
11.
EBioMedicine ; 58: 102911, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-662643

ABSTRACT

BACKGROUND: Given the unceasing worldwide surge in COVID-19 cases, there is an imperative need to develop highly specific and sensitive serology assays to define exposure to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). METHODS: Pooled plasma samples from PCR positive COVID-19 patients were used to identify linear B-cell epitopes from a SARS-CoV-2 peptide library of spike (S), envelope (E), membrane (M), and nucleocapsid (N) structural proteins by peptide-based ELISA. Hit epitopes were further validated with 79 COVID-19 patients with different disease severity status, 13 seasonal human CoV, 20 recovered SARS patients and 22 healthy donors. FINDINGS: Four immunodominant epitopes, S14P5, S20P2, S21P2 and N4P5, were identified on the S and N viral proteins. IgG responses to all identified epitopes displayed a strong detection profile, with N4P5 achieving the highest level of specificity (100%) and sensitivity (>96%) against SARS-CoV-2. Furthermore, the magnitude of IgG responses to S14P5, S21P2 and N4P5 were strongly associated with disease severity. INTERPRETATION: IgG responses to the peptide epitopes can serve as useful indicators for the degree of immunopathology in COVID-19 patients, and function as higly specific and sensitive sero-immunosurveillance tools for recent or past SARS-CoV-2 infections. The flexibility of these epitopes to be used alone or in combination will allow for the development of improved point-of-care-tests (POCTs). FUNDING: Biomedical Research Council (BMRC), the A*ccelerate GAP-funded project (ACCL/19-GAP064-R20H-H) from Agency of Science, Technology and Research (A*STAR), and National Medical Research Council (NMRC) COVID-19 Research fund (COVID19RF-001) and CCGSFPOR20002. ATR is supported by the Singapore International Graduate Award (SINGA), A*STAR.


Subject(s)
B-Lymphocytes/immunology , Coronavirus Infections/diagnosis , Epitopes/immunology , Nucleocapsid Proteins/immunology , Pneumonia, Viral/diagnosis , Spike Glycoprotein, Coronavirus/immunology , Adult , Biomarkers/blood , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/immunology , Epitopes/blood , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/immunology , Serologic Tests/methods
SELECTION OF CITATIONS
SEARCH DETAIL